Original Russian Text Copyright © 2003 by D'yachkova, Nikitina, Gusarova, Albanov, Trofimov.

Organylthiochloroacetylenes: VI.¹ Reaction of Alkylthiochloroacetylenes with Sodium Azide

S. G. D'yachkova, E. A. Nikitina, N. K. Gusarova, A. I. Albanov, and B. A. Trofimov

Favorskii Irkutsk Institute of Chemistry, Siberian Division, Russian Academy of Sciences, Irkutsk, Russia

Received May 4, 2001

Abstract—Alkylthiochloroacetylenes react with sodium azide in mild conditions (20°C, DMSO) to give alkylthioethynyl azides and 4-chloro-5-alkylthio-4*H*-1,2,3-triazoles in a total yield of 72%.

Organyl azides are easily formed in reactions of alkali metal azides with various electrophiles [2]. At the same time, haloacetylenes have never been involved in such reactions. Unsuccessful nucleophilic substitution of chlorine in dialkyl (2-chloroethynyl)phosphonates with sodium azide has only been reported [3]. On the other hand, acetylenes with electronacceptor substituents, such as C≡N, RC=O, O=CNH₂, O=COR, (EtO)₂P=O, and Ph₃P⁺, react with metal azides by the 1,3-dipolar addition scheme, yielding (in protic solvents or on treatment of the reaction mixture with acids) 1,2,3-triazoles [4–6]. Substituted triazoles have also been prepared from perfluoroalkyl-(aryl)bromoacetylenes and aromatic azides [7]. We recently showed for the first time that chloro(ethylthio)acetylene reacts with sodium azide in DMSO to give ethylthioethynyl azide in 28% yield [8].

Aiming at extending the synthetic potential of organylthiochloroacetylenes and obtaining new data of the scarcely explored nucleophilic substitution at *sp*-carbon atom, we have studied reaction of alkylthiochloroacetylenes **Ia** and **Ib** with sodium azide to show that successive treatment of chloroacetylenes **Ia** and **Ib** with NaN₃–DMSO and aqueous HCl results in formation of not only alkylthioethynyl azides **IIa** and **IIb**, but also 4-chloro-5-alkylthio-4*H*-1,2,3-triazoles **IIIa** and **IIIb**. The reaction is exotheric (the reaction temperature was maintained at 25–28°C by external cooling), and the yields of products **IIa**, **IIb** and **IIIa**, **IIIb** are 28–34 and 34–38%, respectively.

The IR spectra of ethynyl azides **IIa** and **IIb** display strong absorption bands at 2114 [$v_{as}(N=N=N)$] [9] and 2200 cm⁻¹ [v(C=C)], whereas the v(C=C) band of the starting alkylthiochloroacetylenes is much weaker and shifted red (2150 cm⁻¹). The ¹H and ¹³C NMR spectra of compounds **IIa** and **IIb** are also

$$RS = -Cl \xrightarrow{2) \ HCl-H_2O} RS = -N_3 + N$$

$$Ia, Ib \qquad IIa, IIb \qquad IIIa, IIIb$$

R = Et (Ia, IIa, IIIa), n-Pr (Ib, IIb, IIIb).

consistent with the proposed structure. At the same time, we failed to obtain a high-quality ¹⁵N NMR spectum of these azides, since they are unstable and easily decompose even in an inert atmosphere, evolving nitrogen and forming dark brown products. Thus, after a day, the nitrogen content of these products is ~60% lower that in starting azides II. The spectral data and elemental analyses allow these compounds to be assigned the structure of 1,2-bis[2-alkylthioethynyl]diazenes IV and their oligomers.

$$RS = N_{N_{N_{N_{-}}}} SR$$

$$IV$$

As would be expected, the latter compounds are unstable and readily available for further transformations.

In the IR spectra of compounds **IV**, the C≡C band at 2200 cm⁻¹ is preserved, but the N=N=N band is lacking. The ¹H NMR spectra show signals of two alkylthio groups, and the ¹³C NMR spectrum contains, along with alkyl proton signals at 12–30 ppm, two more signals at 90 and 152 ppm from the ≡C–S and ≡C–N=N carbon atoms. The ¹⁵N NMR spectra display a single signal at −112 ppm, assignable to the N=N nitrogen atoms [10–14]. The formation of these compounds is consistent with known transformation schemes of organyl azides [15] and involves elimination of a nitrogen molecule from azides **II**, followed by dimerization of the intermediate alkylthioethynylnitrenes.

¹ For comminication V, see [1].

$$2II \xrightarrow{-N_2} 2RS = N: \longrightarrow IV$$

The structure of 4-chloro-5-alkylthio-4*H*-1,2,3-triazoles **III** was proved by ¹H and ¹³C NMR and IR spectroscopy, and their composition, by elemental analysis. According to [16–19], the IR absorption bands of triazoles **III** at 1291, 1100, 1014, and 942 cm⁻¹ relate to triazole ring vibrations. The ¹³C NMR spectra show, along with alkyl carbon signals, two more signals at 63 and 112 ppm, due to ring carbon atoms [20–22]. In the proton-coupled ¹³C spectrum of compound **IIIb**, the upfield triazole ring carbon signal is a doublet with the coupling constant 158 Hz [20].

Triazoles **III** are expected [6] products of 1,3-dipolar cycloaddition of sodium azide to acetylenes **I**.

$$\mathbf{I} + \text{NaN}_3 \xrightarrow{\text{DMSO}} \begin{bmatrix} \text{RS} & \text{Cl} \\ \text{N} & \text{N} \end{bmatrix} \text{Na}^+ \xrightarrow{\text{HCl/H}_2\text{O}} \mathbf{III}$$

Chloroacetylenes I fail to react with sodium azide in dioxane or diethyl ether. From the reaction mixture we isolated the starting NaN₃ and polymerization products of chloroacetylenes I.

Knowing that palladium halides catalyze reactions of haloacetylenes, specifically, carbonylation with carbon monoxide [23], we checked utility of the PdCl₂ catalyst for enhancing the efficiency and selectivity of the reaction of compound **I** in study. Contrary to expectations, in this case alkylthiochloroacetylenes form with sodium azide a complex mixture of unidentified products.

Thus, the reaction of sodium azides with accessible alkylthiochloroacetylenes [24] provides a convenient synthetic route to previously unknown organylthioethynyl azides and 4-chloro-5-alkylthio-4*H*-1,2,3-triazoles.

EXPERIMENTAL

The IR spectra were recorded on a Specord IR-75 spectrometer in microlayer. The ¹H and ¹³C NMR spectra were obtained on Jeol FX-90Q (90 MHz) and Bruker DPX-400 (400 MHz) spectrometers in CDCl₃; internal reference HMDS.

Thin-layer chromatography was performed on alumina plates in hexane, developer I₂.

Reaction of ethylthiochloroacetylene (Ia) with sodium azide. Acetylene Ia, 2.00 g, was added dropwise with stirring over the course of 25 min to a

suspension of 1.08 g of sodium azide in 10 ml of DMSO. Heat release was observed. The reaction temperature was maintained within 25–28°C by external cooling. When addition of acetylene Ia was complete, the reaction mixture was allowed to stir for an additional 3 h at 20-22°C and then poured into 40 ml of cold water and extracted with ether $(3 \times 10 \text{ ml})$. The ether extract was washed with water $(3 \times 10 \text{ ml})$, dried with Na₂SO₄, the ether was removed in a vacuum, and the residue was subjected to a vacuum to isolate 0.59 g (28%) of ethylthioethynyl azide (IIa) as an oily substance soluble in most organic solvents and insoluble in water. IR spectrum, cm⁻¹: 2960, 2928, 2870 $[\nu(C-H)]$, 2198 $[\nu(C\equiv C)]$, 2114 $[\nu_{as}(N=N=N)]$, 1514, 1442, 1370, 1084, 1042, 956, 900, 865, 814 [δ(C–H)], 1242 [$v_c(N=N=N)$], 760 [v(C-S)]. ¹H NMR spectrum, δ, ppm: 1.35 t (3H, CH₃), 2.68 q (2H, CH₂). ¹³C NMR spectrum (CDCl₃), $\delta_{\rm C}$, ppm: 14.34 (CH₃), 28.13 (CH₂), 85.95 (\equiv CS), 116.21 (\equiv CH₃) [20, 22, 25, 26]. Found, %: C 37.05; H 4.49; N 32.03; S 25.85. C₄H₅N₃S. Calculated, %: C 37.78; H 3.96; N 33.04; S 25.22.

Azide **IIa** was allowed to stand for 48 h at room temperature in an inert atmosphere (argon) and analyzed once more. The spectral characteristics and elemental analyses are consistent with structure **IVa**. IR spectra, cm⁻¹: 2960, 2914, 2870 [ν(C–H)], 2198 [ν(C≡C)], 1514, 1442 [δ(C–H)], 1370, 1256, 1084, 1042, 956, 914, 865, 814 [δ(C–H)], 760 [ν(C–S)]. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.35 t (3H, CH₃), 2.87 q (2H, CH₂) 2.99 t (2H, CH₂S). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 12.83, 14.60, 28.15, 28.18, 90.70 (≡C–S), 152.38 (≡C–N=N) [20, 22, 25, 26]. Found, %: C 47.93; H 5.19; N 13.00; S 31.89. C₈H₁₀N₂S₂. Calculated, %: C 48.45; H 5.08; N 14.13; S 32.34.

The aqueous layer after ether extraction was combined with washings, acidified with 10% HCl (~2 ml) to pH 4, and extracted with chloroform (5×5 ml). The chloroform extract was washed with water $(3 \times 10 \text{ ml})$, dried with Na₂SO₄, and the solvent was removed in a vacuum to obtain 0.93 g (34%) of 4-chloro-5-ethylthio-4H-1,2,3-triazole (IIIa), viscous light brown liquid. IR spectrum, cm⁻¹: 2980, 2932, 2850 [ν (C–H)], 1442, 1335, 1164, 824 [δ (C–H)], 1260 [ν (N–N=N)], 1080, 970, 890 (triazole ring), 782, 734, 656 [v(C-S)]. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.07 t (3H, CH₃), 2.74 g (2H, CH₂), 2.89 s (1H, CHCl). ¹³C NMR spectrum (CDCl₃), δ_C , ppm: 14.45, 28.62 (EtS), 64.28 (ring CHCl), 113.79 (ring S-C=N). Found, %: C 30.02; H 4.05; Cl 22.00; N 25.03; S 20.01. C₄H₆Cl· N₃S. Calculated, %: C 29.36; H 3.70; Cl 21.67; N 25.68; S 19.60.

(n-Propylthio)ethynyl azide (IIb) and 4-chloro-5-alkylthio-4H-1,2,3-triazole (IIIb) were

prepared with the above procedure from 0.97 g of sodium azide and 2.00 g of acetylene **Ib** in 8 ml of DMSO. Yields of compounds **IIb** and **IIIb** 0.72 (34%) and 1.00 g (38%), respectively. n-Propylthioethynyl azide (IIb). IR spectrum, cm⁻¹: 2950, 2928, 2860 [ν (C-H)], 2200 [ν (C=C)], 2114 [ν _{as}(N=N=N)], 1514, 1460, 1380, 1292, 1092, 938, 898, 782 $[\delta(C-H)]$, 1230 [$\nu_s(N=N=N)$], 728 [$\nu(C-S)$]. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.99 m (CH₃), 1.70 m (CH₂), 2.67 m (CH₂S). Found, %: C 41.90; H 5.20; N 28.25; S 22.98. C₅H₇N₃S. Calculated, %: C 42.53; H 5.00; N 29.76; S 22.71. 4-Chloro-5-(n-propylthio)-4H-1,2,3-triazole (IIIb). IR spectrum, cm⁻¹: 2970, 2928, 2870 [v(C-H)], 1470, 1414, 1384, 1300, 830 $[\delta(C-H)]$, 1242 [$\nu(N-N=N)$], 1120, 1099, 1056, 900 (triazole ring) 728, 700 [ν (C–S)]. ¹H NMR spectrum (CDCl₃), δ, ppm: 1.06 t (3H, CH₃), 1.73 m (2H, CH₂), 2.87 s (1H, CHCl), 3.04 t (2H, CH₂S). ¹³C NMR spectrum (CDCl₃), δ_C, ppm: 13.75, 23.62, 36.39 (PrS), 63.69 (ring CHCl), 112.57 (ring S–C=N). ¹³C–{¹H} NMR spectrum (CDCl₃), δ , ppm: 13.62 q, 23.86 t, 36.10 t (PrS), 64.02 d (*J* 158 Hz), 113.12 s. Found, %: C 34.02; H 5.28; Cl 20.30; N 24.03; S 18.95. C₅H₈. ClN₃S. Calculated, %: C 33.80; H 4.54; Cl 19.96; N 23.66; S 18.05.

Reaction of chloro(*n*-propylthio)acetylene with sodium azide in DMSO in the presence of PdCl₂. Acetylene **Ib**, 2.00 g, and 0.026 g of PdCl₂ were added dropwise with stirring to 0.97 g of sodium azide in 8 ml of DMSO. Heat release was observed. The reaction temperature could be maintained within 65–70°C by external heating. After addition of acetylene was complete, the mixture was allowed to stir for an additional 3 h at 20-25°C, poured into 30 ml of cold water and extracted with ether $(3 \times 10 \text{ ml})$. The ether extract was washed with water (3×10 ml), dried with Na₂SO₄, the ether was removed in a vacuum, and the residue was subjected to a vacuum to isolate 0.85 g of a mixture of compounds (TLC). IR spectrum, cm⁻¹: 2970, 2935, 2870 [ν (C–H)], 2200 [ν (C≡C)], 2156 [$v(C \equiv C)$], 2121, 1642, 1512, 1463, 1412, 1374, 1298, 1235, 1200, 1091, 1021, 949, 877, 784, 735, ¹H NMR spectrum (CDCl₃), δ, ppm: 0.99– 1.25 m (CH₃), 1.70–1.82 m (CH₂), 2.63–2.70 m (CH₂S), 3.44 s. 13 C NMR spectrum (CDCl₃), δ_C , ppm: 13.56, 13.85, 13.97, 23.23, 23.27, 23.52, 33.23, 37.83, 39.22, 60.86, 69.58, 86.44, 91.46. Found, %: C 46.03; H 6.75; Cl 12.48; N 6.07; S 28.54.

The aqueous layer after ether extraction was combined with washings, acidified with 10% HCl (\sim 2 ml) to pH 4, and extracted with chloroform (5×5 ml). The chloroform extract was washed with water (3×10 ml), dried with Na₂SO₄, and the solvent was removed in a vacuum to isolate 0.33 g of a dark brown liquid (ac-

cording to TLC, a mixture of compounds). IR spectrum, cm⁻¹: 2970, 2928, 2810, 2242, 2211, 2128, 1648–1642, 1521, 1470, 1442, 1391, 1330, 1242, 1144, 1028, 984, 900, 798, 742. ¹H NMR spectrum (CDCl₃), δ , ppm: 0.99–1.03 m, 1.24 m, 1.63–1.76 m, 2.91 m, 3.06 m. ¹³C NMR spectrum (CDCl₃), δ _C, ppm: 13.85, 19.44, 23.72, 36.49, 36.54, 92.56, 112.27, 122.32. Found, %: C 42.39; H 5.26; Cl 5.08; N 20.05; S 19.29.

ACKNOWLEDGMENTS

The work was financially supported by the Russian Foundation for Basic Research (project no. 99-03-32939).

REFERENCES

- D'yachkova, C.G., Gusarova, N.K., Nikitina, E.A., Vakul'skaya, T.I., Klyba, L.V., Dolenko, G.N., Aksamentova, T.N., and Trofimov, B.A., *Zh. Obshch. Khim.*, 2002, vol. 72, no. 3, p. 450.
- Comprehensive Organic Chemistry, Barton, D.H. and Ollis, W.D., Eds., Oxford: Pergamon, 1979, vol. 2. Translated under the title Obshchaya organicheskaya khimiya, Moscow: Khimiya, 1982, vol. 3.
- Garibina, V.A., Leonov, A.A., Dogadina, A.V., Ionin, B.I., and Petrov, A.A., *Zh. Obshch. Khim.*, 1985, vol. 55, no. 9, p. 1994.
- 4. Tanaka, Y., Velen, S.R., and Miller, S.I., *Tetrahedron*, 1973, vol. 29, no. 21, p. 3271.
- 5. Vereshchagin, L.I., Filippova, T.M., Bol'shedvorskaya, R.L., Gavrilov, L.D., and Pavlova, G.A., *Zh. Org. Khim.*, 1984, vol. 20, no. 1, p. 142.
- Nesmeyanov, A.N. and Rybinskaya, M.I., *Dokl. Akad. Nauk SSSR*, 1964, vol. 158, no. 2, p. 408.
- Stepanova, N.P., Orlova, N.A., Galishev, V.A., Turbanova, E.S., and Petrov, A.A., *Zh. Org. Khim.*, 1985, vol. 21, no. 5, p. 979.
- 8. D'yachkova, C.G., Gusarova, N.K., Nikitina, E.A., Al'pert, M.L., and Trofimov, B.A., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2001, no. 4, p. 720.
- 9. Bellamy, L.J., *The Infra-red Spectra of Complex Molecules*, London: Methuen, 1958.
- Witanowski, M., Stefaniak, L., and Webb, G.A., *Annual Reports on NMR Spectroscopy*. Vol. 11B. *Nitrogen NMR Spectroscopy*, London: Academic, 1981.
- 11. Remaund, G., Zhou, X-X., Chattopadhyaya, J., Oivanen, M., and Lönnberg, H., *Tetrahedron*, 1987, vol. 43, no. 19, p. 4453.
- 12. Cmoch, P., Wiench, J.W., Stefaniak, L., and Sit-

- cowski, J., *J. Mol. Struct.*, 1999, vol. 477, no. 1, p. 119.
- 13. Chippendale, A.M., McGeorge, G., Harris, R.K., and Brennan, C.M., *Magn. Reson. Chem.*, 1999, vol. 37, no. 3, p. 232.
- 14. Connor, J.A., Kennedy, R.J., Dawes, H.M., Hursthouse, M.B., and Walker, N.P., *J. Chem. Soc., Perkin Trans.* 2, 1990, no. 1, p. 203.
- Comprehensive Organic Chemistry, Barton, D.H. and Ollis, W.D., Eds., Oxford: Pergamon, 1979, vol. 2. Translated under the title Obshchaya organicheskaya khimiya, Moscow: Khimiya, 1982, vol. 3, p. 353.
- 16. Physical Methods in Heterocyclic Chemistry, Katritzky, A.R., Ed., New York: Academic, 1963.
- 17. Rondestvedt, C.S., Jr. and Chang, P.K., *J. Am. Chem. Soc.*, 1955, vol. 77, no. 24, p. 6532.
- 18. Hartzel, L.W. and Benson, F.R., *J. Am. Chem. Soc.*, 1954, vol. 76, no. 3, p. 667.
- 19. Lieber, E., Rao, C.N.R., Chao, T.S., and Rubenstein, H., *Can. J. Chem.*, 1958, vol. 36, no. 10,

- p. 1441.
- 20. Stothers, J.B., *Carbon-* ¹³*C NMR Spectroscopy*, New York: Academic, 1972.
- 21. Mirskova, A.N., Seredkina, S.G., Kukharev, B.F., and Bannikova, O.B., *Zh. Org. Khim.*, 1990, vol. 26, no. 1, p. 201.
- 22. Levy, G.C. and Nelson, G.L., *Carbon-13 Nuclear Magnetic Resonance for Organic Chemists*, New York: Wiley, 1972.
- 23. Zung, T.T., Bruk, L.G., Temkin, O.N., and Malashkevich, A.V., *Mendeleev Commun.*, 1995, no. 1, p. 3.
- 24. Mirskova, A.N., Seredkina, S.G., and Voronkov, M.G., USSR Inventor's Certificate 1204616, 1986, *Byull. Isobret.*, 1986, no. 2, p. 1013.
- 25. Kalabin, G.A., *Doctoral (Chem.) Dissertation*, Irkutsk, 1982
- Ionin, B.I., Ershov, B.A., and Kol'tsov, A.I., YaMR spektroskopiya v organicheskoi khimii (NMR Spectroscopy in Organic Chemistry), Leningrad: Khimiya, 1983.